Comparative dissolution of electrospun Al2O3 nanofibres in artificial human lung fluids.
نویسندگان
چکیده
Sub-micron sized alumina fibres were fabricated by electrospinning and calcination of a polymer template fibre. In the calcination step, different controlled temperature heating cycles were conducted to obtain fibres of different crystalline structures. Their biodurabilities were tested at pH 7.4 with lung airway epithelial lining fluid or serum ultrafiltrate (SUF) and at pH 4.5 with macrophage phagolysosomal simulant fluid (PSF). Potential to generate free radicals was tested in vitro. Through the variation in the soak temperature from 650 °C to 950 °C (experiments S650-S950), the heating protocol affected the morphological characteristics, crystal structure, surface area, and density of the alumina fibres while their dissolution half-times were not significantly affected in SUF or PSF. Fibre samples formed at different heating ramp rates (experiments R93-R600) showed significant variation in the dissolution rates with the highest ramp rate corresponding to the highest dissolution rate. Thus, by increasing the calcination temperature ramp rate the alumina fibres may be produced that have reduced biodurability and lower inflammogenic potential. The fibres with the highest dissolution rated had the least aluminium content. The solubility half-times of the alumina fibres were shortest for fibres calcined at the fastest temperature ramp rate (though soak temperature did not have an effect). The ramp rates also affected the aluminium content of the fibres suggesting that the content may affect the structural strength of the fibres and control the dissolution.
منابع مشابه
Using A Range of PVB Spinning Solution to Acquire Diverse Morphology for Electrospun Nanofibres
Morphological changes in Polyvinyl Butyral (PVB) electrospun nanofibres can be acquired by preparation of PVB spinning solution in different solvents. Accordingly, three solvents, including ethyl alcohol, n-butanol and isopropanol, with diverse physical properties (e.g. boiling point, density, dipole moment and dielectric constant) were used to prepare PolyVinyl Butyral (PVB) spin...
متن کاملCrosslinking neat ultrathin films and nanofibres of pH-responsive poly(acrylic acid) by UV radiation
Electrospun polyelectrolyte hydrogel nanofibres are being developed for many applications including artificial muscles, scaffolds for tissue engineering, wound dressings and controlled drug release. For electrospun polyelectrolytes, a post-spinning crosslinking process is necessary for producing a hydrogel. Typically, radiation or thermal crosslinking routines are employed that require multifun...
متن کاملMagnetoelectric CoFe2O4/polyvinylidene fluoride electrospun nanofibres.
Magnetoelectric 0-1 composites comprising CoFe2O4 (CFO) nanoparticles in a polyvinylidene fluoride (PVDF) polymer-fibre matrix have been prepared by electrospinning. The average diameter of the electrospun composite fibres is ∼325 nm, independent of the nanoparticle content, and the amount of the crystalline polar β phase is strongly enhanced when compared to pure PVDF polymer fibres. The piezo...
متن کاملHigh-sensitivity acoustic sensors from nanofibre webs
Considerable interest has been devoted to converting mechanical energy into electricity using polymer nanofibres. In particular, piezoelectric nanofibres produced by electrospinning have shown remarkable mechanical energy-to-electricity conversion ability. However, there is little data for the acoustic-to-electric conversion of electrospun nanofibres. Here we show that electrospun piezoelectric...
متن کاملCarbon Nanotubes Reinforced Electrospun Polymer Nanofibres
With the rapid development in nanoscience and nanotechnology, there is an ever increasing demand for polymer fibres of diameters down to a nanometre scale having multiple functionalities. Electrospinning, as a simple and efficient nanofibre-making technology, has been used to produce polymer nanofibres for diverse applications. Electrospun nanofibres based on polymer/carbon nanotube (CNT) compo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental science. Nano
دوره 2 3 شماره
صفحات -
تاریخ انتشار 2015